First, I was struck by the existence of prior publications on Arxiv. It is no longer exciting to look at lists of papers accepted at a conference: that's not where we learn about new results, but on Arxiv. I knew that, but this brought it home for me: conferences no longer serve the purpose of quickly communicating the latest research results. That was a major service they were doing, perhaps the main one, and that is no longer the case.
Then, why bother look at such a list at all? Because, in areas outside my own small subarea, I don't follow and can't judge what's appearing on Arxiv, so the conference committees provide a useful filter. Why do I care what happens outside my own small subarea? Truly, I do not care very much, but if a big result comes out, I would like to hear about it. Why? So that I don't sound stupid at parties when people ask me about it; and because of some guilty feeling that I ought to be broader, even if I don't really feel like it. In addition, I am always interested if some research happens that might provide good teaching material. Finally, there is a little bit of curiosity: a good talk given by a good speaker on a good topic can be enjoyable even if it's not my area. (Then, it does not even have to be Theory, and in fact, not even Computer Science.)
Those reasons suggest that I do not need to look at lists of accepted papers other than STOC and FOCS, and that I would benefit from those lists more if they were even more selective. I do not want STOC and FOCS to be more selective, but I personally might appreciate it if they were a two-tier conference.
Second, I have recently criticized Oded Goldreich's latest essay on Luca Trevisan's blog, but looking at the abstracts of papers accepted at STACS, I could not but recognize the turns of phrase that he lamented. Consider, for example, the paper I mentioned yesterday. Here is the full abstract: The Travelling Salesman Problem is one the most fundamental and most studied problems in approximation algorithms. For more than 30 years, the best algorithm known for general metrics has been Christofides's algorithm with approximation factor of 3/2, even though the so-called Held-Karp LP relaxation of the problem is conjectured to have the integrality gap of only 4/3. Very recently, significant progress has been made for the important special case of graphic metrics, first by Oveis Gharan et al., and then by Momke and Svensson. In this paper, we provide an improved analysis for the approach introduced by Momke and Svensson yielding a bound of 13/9 on the approximation factor, as well as a bound of 19/12+epsilon for any epsilon>0 for a more general Travelling Salesman Path Problem in graphic metrics.
Before I read his essay, I would not have noticed anything special about that abstract. But now, I can see the choice of arguments. Except for the first sentence of the abstract, everything else reads like a list of Olympic race athletic records - an empty race for ever-better approximation factors, with no concern for the underlying structure. The approximation factor has become, not just a (key) indication of the understanding of the problem, but a goal in itself. As I read that, I was a little bit frustrated: I wanted a hint of how the author got that improvement to an important result! What did they learn about the problem, that Moemke and Svensson did not know?
Then I remembered Goldreich's essay.
Strike one for
Update: Just to make it clearer. I like the result, I think it's worthwhile, I am interested, I would have been happy to do that research and be an author of that paper. My only quibble is with the style of the abstract.